Methods
(static) abs(z) → {Number}
Computes the absolute value sqrt(a^2 + b^2) for the number a + bi
Parameters:
Name | Type | Description |
---|---|---|
z |
Array.<Number> | The number |
- Source:
Returns:
The absolute value
- Type
- Number
(static) abs2(z) → {Number}
Computes the absolute value squared a^2 + b^2 for the number a + bi
Parameters:
Name | Type | Description |
---|---|---|
z |
Array.<Number> | The number |
- Source:
Returns:
The absolute value squared
- Type
- Number
(static) add(z0, z1) → {Array.<Number>}
Adds two complex numbers
Parameters:
Name | Type | Description |
---|---|---|
z0 |
Array.<Number> | The first number |
z1 |
Array.<Number> | The second number |
- Source:
Returns:
The imaginary number as entries [a,b]
- Type
- Array.<Number>
(static) conj(z) → {Array.<Number>}
Computes the complex conjugate a - bi for the number a + bi
Parameters:
Name | Type | Description |
---|---|---|
z |
Array.<Number> | The number |
- Source:
Returns:
The imaginary number as entries [a,b]
- Type
- Array.<Number>
(static) div(z0, z1) → {Array.<Number>}
Divides two complex numbers
Parameters:
Name | Type | Description |
---|---|---|
z0 |
Array.<Number> | The first number |
z1 |
Array.<Number> | The second number |
- Source:
Returns:
The imaginary number as entries [a,b]
- Type
- Array.<Number>
(static) equals(z0, z1, eps) → {Boolean}
Checkes, whether two complex numbers are approximately equal
Parameters:
Name | Type | Default | Description |
---|---|---|---|
z0 |
Array.<Number> | The first number | |
z1 |
Array.<Number> | The second number | |
eps |
Number | 1e-10 | [1E-10] The epsilon value to check for approximate equality |
- Source:
Returns:
True, if the two numbers are approximately equal, false otherwise
- Type
- Boolean
(static) imag(z) → {Number}
Extracts the imaginary part b of the number a + bi
Parameters:
Name | Type | Description |
---|---|---|
z |
Array.<Number> | The number |
- Source:
Returns:
The imaginary component
- Type
- Number
(static) mult(z0, z1) → {Array.<Number>}
Multiplies two complex numbers
Parameters:
Name | Type | Description |
---|---|---|
z0 |
Array.<Number> | The first number |
z1 |
Array.<Number> | The second number |
- Source:
Returns:
The imaginary number as entries [a,b]
- Type
- Array.<Number>
(static) neg(z) → {Array.<Number>}
Negates the complex number a + bi to give -a - bi
Parameters:
Name | Type | Description |
---|---|---|
z |
Array.<Number> | The number |
- Source:
Returns:
The imaginary number as entries [a,b]
- Type
- Array.<Number>
(static) num(a, b) → {Array.<Number>}
Simple complex number representation as an array with two components.
The first component is the real and the second the imaginary part.
So the number a + bi is represented as [a,b]
Parameters:
Name | Type | Default | Description |
---|---|---|---|
a |
Number | 0 | The real component |
b |
Number | 0 | The imaginary component |
- Source:
Returns:
The imaginary number as entries [a,b]
- Type
- Array.<Number>
(static) real(z) → {Number}
Extracts the real part a of the number a + bi
Parameters:
Name | Type | Description |
---|---|---|
z |
Array.<Number> | The number |
- Source:
Returns:
The real component
- Type
- Number
(static) sqrt(z) → {Number}
Computes the principal square root sign(b) * sqrt(a + bi) of the complex number a + bi
Parameters:
Name | Type | Description |
---|---|---|
z |
Array.<Number> | The number |
- Source:
Returns:
The real component
- Type
- Number
(static) sub(z0, z1) → {Array.<Number>}
Subtracts two complex numbers
Parameters:
Name | Type | Description |
---|---|---|
z0 |
Array.<Number> | The first number |
z1 |
Array.<Number> | The second number |
- Source:
Returns:
The imaginary number as entries [a,b]
- Type
- Array.<Number>